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Table 1: List of Abbreviations 

 

  

Term / Abbreviation Definition 
AI Artificial Intelligence 
MSI Multi-Sphere Image 
VR Virtual Reality 
SfM Structure from motion 
HMD Head-mounted Display 
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1 INTRODUCTION 
Neural rendering approaches have advanced drastically in the last few years. They can produce photo-
realistic reconstructions of objects and scenes. However, rendering speed has been one of the main 
challenges. Real-time rendering speeds are difficult to obtain but necessary for many applications. 
Especially in VR, high frame rates are necessary to provide good immersion and prevent side effects 
such as motion sickness. 

We present the first results of our approach for photo-realistic scene neural rendering. We combine 
the best available neural rendering methods with a scene representation that enables real-time 
rendering. We extended the MSI scene representation to be able to represent very large scenes, which 
would be too large to fit a single MSI. Additionally, we provide a plugin for Unreal Engine that enables 
the integration of our novel multi-MSI representation into projects within Unreal Engine. 

2 BACKGROUND 
Neural rendering deals with learning a scene’s representation and rendering any view of it using a 
neural network. Neural rendering makes it possible to easily capture models of real-life scenes, which 
otherwise would be difficult and expensive to achieve, simply using images as input data. 

One of the requirements for SHARESPACE is to have virtual scenes, in which people can come together. 
For example, the Sport scenario requires a virtual scene in which people in VR can ride on bicycles. This 
will require the scenes to be exceptionally large with multiple kilometers of road. Additionally, the 
scenes should be photo realistic to provide the highest possible immersion. Creating such scenes with 
classical methods would be prohibitively expensive. 

Prior neural rendering methods dealt only with object [3] or small-scale scene [4] rendering. Later 
methods expanded on this to work for large-scale scenes as well [5]. However, rendering frame rates 
are low, which would be a problem for the user experience. 

Our method builds on our work called “SOMSI” Tewodros et al. [1], which enables very high frame 
rate rendering using standard hardware. Even though only small-scale scenes were shown, there is a 
reasonable expectation to be able to extend this to large-scale scenes. 

3 APPROACH 

 

Figure 1 – Overview of our pipeline. 
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We developed and investigated the following approaches: 

• Construction of a capturing device 
• Studied different SfM and Bundle Adjustment frameworks because the quality of the MSI 

generation depends heavily on the accurate calculation of the position and orientation of the 
camera in the scene. 

• MSI and multi-MSI for large scenes using SOMSI 
• Extracting MSI from Nerf 

Our approach starts with recording a video of any scene. As we target to capture as much as possible 
from an outdoor, large environment, we use spherical and fisheye cameras provided by the 
SHARESPACE partner Ricoh. Figure 2 shows a capturing rig that we constructed in collaboration with 
Ricoh to use up to six of their cameras simultaneously. We then extract individual frames from the 
video. The frames are used to perform SfM, which returns the camera poses belonging to each frame. 
Given the frames with the position information, we train a neural network to represent the real scene 
accurately. After the training is concluded, we can extract a multi-MSI representation that can be 
rendered in real time. An overview of this pipeline can be seen in Figure 1. A more detailed explanation 
is given in the following. 

 

Figure 2 – Bicycle capturing rig with six Theta Z1 cameras from Ricoh. 

There are various ways of recording a scene. To simplify the data capture, we record videos with one 
or multiple cameras instead of taking individual images. Each camera is pre-calibrated using Matlab’s 
camera calibration tool. We extract keyframes from the videos in a way that ensures sufficient motion 
between each frame, e.g. every 10th frame. The extracted video frames are then used to perform SfM 
with Colmap. Colmap then returns the camera’s position and orientation within the scene at the time 
that each frame was captured. 

We use both, the extracted video frames and their corresponding camera poses, as input for the neural 
network. The neural network encodes an initially empty scene. A classical volume rendering procedure 
is performed on the encoded scene for each of the camera poses. The neural network then updates 
the internal scene representation by comparing the rendered images with the actual video frames. By 
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involving the volume rendering procedure, the network is forced to learn a meaningful result. This 
enables it to learn the real scene geometry. 

After the network learned a high-quality representation of the scene, it is possible to render even 
previously unknown images of the scene. We then extract our multi-MSI representation from the 
network. Each MSI is a simplified scene representation of multiple spheres centered at one point. Each 
sphere contains only scene contents that it intersects with. Their advantage lies in the simple real-time 
rendering. By arranging multiple of these MSI close together, it is possible to visualize scenes that are 
too large for a single MSI. An example of the MSI representation is shown in Figure 5. 

We implemented an Unreal Engine plugin that allows the real-time rendering of multi-MSI. Based on 
the position of the user’s HMD, we load all MSI that are within a predefined radius of the user. If the 
user moves, any MSI that comes within the radius will be loaded and any MSI that goes out of the 
radius will be unloaded. At any given point, only the single MSI that is closest to the user will be 
rendered. Dynamic loading is essential to reduce the hardware requirements for the system. 

   

     

Figure 3 – Example of an MSI rendering for two views from different positions. A few points in the background and 
foreground have been highlighted to emphasize the motion. 
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4 RESULTS 
We implemented a multi-MSI renderer as an Unreal Engine plugin. It can render multi-MSI scenes in 
real time. Multi-MSI scenes are created through our neural rendering approach described in section 3. 
Figure 3 shows a screenshot from Unreal Engine while running our plugin. A video of the live rendering 
is also available to be viewed on YouTube: www.youtube.com/watch?v=ChyHFYZYhSw  

 

Figure 4 – Screenshot of the Unreal Engine plugin while rendering a multi-MSI scene. Optionally, a mini-map in the top right 
shows the locations of the VR user and the MSI. 

We examined the memory requirements of differently sized multi-MSI scenes. This was done by 
tracking the overall system memory usage while operating only the Unreal Engine plugin. We observed 
that the importing of a scene requires a substantially larger amount of memory than the later usage 
of that scene. The import of a scene is a necessary step that needs to be performed once when loading 
a new scene for the first time. After a scene has been imported once, it can be loaded without an 
import in the future. We observe that an average of 0.3 GB per MSI is necessary to load and play a 
multi-MSI scene. The initial import of a multi-MSI scene, however, requires approximately 1.75 GB per 
MSI. Even though the import requires significantly more memory, this step should be performed 
before the whole system is taken into operation. This means that other SHARESPACE systems do not 
have to be running, which will leave more system resources available. An overview of the memory 
requirements from our tests is shown in Table 2. 

Table 2: Memory requirements for loading multi-MSI. 

 1 MSI 2 MSI 3 MSI 4 MSI 9 MSI 
Load & Play 0.4 GB 0.5 GB 0.9 GB 1.3 GB 2.5 GB 
Import 2.1 GB 3.5 GB 5.5 GB 7.0 GB 14.8 GB 

 

http://www.youtube.com/watch?v=ChyHFYZYhSw


 Public    D4.9 

Page 9 of 9 

5 LIMITATIONS AND NEXT STEPS 
We show that we can scale the MSI representation to larger scenes. However, there are some concerns 
about how well it scales, especially considering the extremely large scene requirements. One scaling 
factor is time. Training a high-quality reconstruction can take more than 24 hours on medium-sized 
scenes. Scenes of the required multiple kilometers would take multiple times that. Additionally, 
loading large multi-MSI scenes require a lot of memory. We already addressed this by having a dynamic 
loading of the necessary MSIs. However, it is not yet clear how many MSI need to be loaded at any 
given time and how much memory the overall system would need to have. 

The results of the multi-MSI rendering show that there are some flickering effects within the scene. 
This happens because each MSI discretizes the scene in different areas. This can cause small details or 
lighting effects to be represented in different ways. These differences between the MSI will be 
recognized as a flickering effect whenever the MSIs are quickly switched. 

More recent advances in neural rendering show a novel approach which supports real-time rendering 
[2]. Previously, it was not possible to integrate a real-time rendering pipeline based on neural 
rendering in e.g. Unreal Engine. This was the advantage of the MSI representation because it enables 
real-time rendering that can easily be integrated in other software. The downside of the MSI is that 
they are not a complete representation of the scene. The new gaussian splatting approach would not 
suffer from the flickering effects we saw with multi-MSI. Additionally, the memory and training time 
constraints are lower than those of the multi-MSI. This is why we are now experimenting with using 
gaussian splatting for large-scale scenes and target at developing a solution that combines both 
approaches into a global hybrid rendering framework. 
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