
 

This project has received funding from the European Union’s Horizon Europe research and innovation 

programme under Grant Agreement No 101092889, Topic HORIZON-CL4-2022-HUMAN-01-14 

 

 

SHARESPACE 

Embodied Social Experiences in Hybrid Shared Spaces 

 
 

 

 

Project Reference No 101092889 

Deliverable D3.1. Self-calibrating ego-centric visual-inertial body tracking v1  

Workpackage WP3: task 3.2 

Nature D (Deliverable) 

Dissemination Level PU - Public 

Date 31/05/2024 

Status v1.0 

Editor(s) Bertram, Taetz (DFKI) 
Markus, Miezal (DFKI) 

Involved Institutions DFKI 

Document Description This deliverable presents the first results on task 3.2  

 

  



 Public 06.06.2024   D3.1 

 

CONTENTS 

List of Tables ............................................................................................................................................ 2 

List of Figures ........................................................................................................................................... 2 

1 Introduction ..................................................................................................................................... 4 

2 Background ...................................................................................................................................... 4 

3 Approach ......................................................................................................................................... 6 

4 Results ............................................................................................................................................. 9 

5 Limitations and Next Steps ............................................................................................................ 11 

6 References ..................................................................................................................................... 11 

 

 

  



 Public 06.06.2024   D3.1 

 

LIST OF TABLES  

Table 1: List of Abbreviations ................................................................................................................... 3 

 

 

LIST OF FIGURES 

Figure 1 - Overview of visual-inertial full-body tracking system ............................................................. 6 

Figure 2: Segments of the upper body (red lines) and root joint (blue dot) in the upper image, 

segments, and root joint of the left and right hand (middle image), and the visualization of both 

together in our visualizer, lower image. ................................................................................................. 7 

Figure 3: Illustration of the kinematic model of the lower body in the navigation frame (N) with 

segments (blue lines) and joint positions (red dots) and inertial sensors (small boxes) with their 

coordinate systems. ................................................................................................................................ 8 

Figure 4: The plot shows the online segment length estimation and the timeline of the different 

lower body segments. The green area displaces an uncertainty measure from the Bayesian recursive 

estimator, revealing the uncertainty of the joint position estimate. .................................................... 10 

 

 

  



 Public 06.06.2024   D3.1 

 

Table 1: List of Abbreviations 

 

  

Term / Abbreviation Definition 

IMU Inertial Measurement Unit 

REQ Requirements 

I2S IMU-to-Segment 



 Public 06.06.2024   D3.1 

 

1 INTRODUCTION 

The technologies for human body tracking has significantly advanced applications in fields ranging 

from virtual reality to health monitoring. However, achieving precise, full-body tracking with ease of 

use remains a complex challenge. Our lightweight demonstrator system aims to address the 

prevalent difficulties associated with full-body tracking and its integration into a digital environment. 

By combining ego-centric visual-inertial tracking with minimal setup requirements, this system seeks 

to offer a practical and efficient solution for both professional and casual users. 

At the core of our demonstrator is an innovative approach to tracking the human body in a global 

coordinate system, a task often marred by challenges relating to sensor placement, calibration, and 

accuracy. Traditional tracking systems typically require a large number of inertial sensors that must 

be meticulously calibrated to specific body segments. This not only adds to the complexity but also 

increases the potential for inaccuracies caused by sensor mispositioning. Our system addresses these 

issues by reducing the number of necessary inertial sensors while maintaining high levels of accuracy 

in joint angle tracking. 

Ease of use is a critical component of our system's design philosophy. Traditional full-body tracking 

systems often involve cumbersome setups that are not only time-consuming but also intrusive to the 

user’s experience. Our demonstrator, in contrast, emphasizes a simple and unobtrusive setup. This 

makes the system particularly suitable for a variety of applications, from interactive virtual 

environments and gaming to real-time motion analysis in sports and rehabilitation. 

In essence, our lightweight demonstrator represents a step forward in the realm of human body 

tracking for virtual environments. By addressing the key issues of accurate full-body tracking, sensor 

calibration, and setup complexity, we offer a solution that is both high-performing and user-friendly. 

Whether utilized for enhancing user experiences in digital environments or for precise monitoring in 

professional settings, our system stands out as a versatile and reliable tool for full-body tracking. 

2 BACKGROUND 

Human body pose and motion tracking from an ego-centric perspective, where the tracking device is 

mounted on the body, has emerged as a significant area of research in wearable computing and 

immersive environments. This approach leverages the user's perspective to enhance interaction with 

digital systems, creating a seamless bridge between the physical and digital worlds.  

The goal of this deliverable is to demonstrate the first version of our developments towards a 

lightweight, full-body tracking system that is easy to setup, can track joint angles of the full human 

body and can be used to locate the human body within a digital environment accurately. 

The following requirements have a direct influence on the demonstrator and are derived from the 

health scenario and encompass (based on the requirements defined for the health scenario): 

- REQ1: To ensure that the patient performs the exercises is the first priority (so the motivation 
to/fear of exercise -> make the available exercise sets ‘easy’, ‘doable’, ‘fun’, ‘engaging’, 
‘challenging’) – the system needs to offer a variety of movement options at different levels of 
difficulty  

- REQ3: Motion tracking sensors need to provide data allowing for computation of: amplitude of 
motion, speed of movement and smoothness -> spatiotemporal data with a point of origin (for 
calculation of displacement)  
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- REQ4: The system should support/provide all exercises usually done in a session at the hospital 
(lying on a bed or on the floor, standing, leaning against the wall)  

- REQ5: Reliable tracking of the upper legs, pelvis, and spine   
- REQ6: Motion prediction of body segments which do not have IMU sensors (info from cameras)  
- REQ7: Fusion of the IMU information with the information of a camera image from an 

laptop/smartphone or the head-mounted display.   
- REQ8: The remote patient should get the feeling of being part of the group and performs the 

exercises with the group  
- REQ15: Sensors need to be attached by Velcro to strap. Clear instruction needs to be provided 

where to place them on the body and how to close them.  
- REQ 17: head-mounted display (Phase I and Phase II) should be small, lightweight, and wireless 

and easy to connect to the processing unit (laptop or smartphone)  
 

To reach the stated goal and address the given requirements, ego-centric visual-inertial tracking was 

utilized, i.e., a combination of HMD-integrated cameras and inertial sensors mounted on body 

segments. This approach solves the following technical challenges and matches the requirements as 

follows: 

- Fused tracking of full-body in one joint coordinate system of visual (HMD) and inertial 

tracking system with position tracking and possible localization relative to a starting point for 

usage in a virtual environment (REQ8, REQ7, REQ6, REQ4, REQ3, REQ1) 

- Reduced number of inertial sensors for full-body tracking (5-7 sensors + 1 HMD) (REQ 17) 

- Self-calibration of joint positions and segment length estimates/ease of setup (REQ 15) 

- Accurate joint angle estimation of the lower body with robustness to drift and magnetic 

disturbances (REQ 5) 

Related work: 

One of the primary challenges addressed in our system is full-body tracking using a reduced number 

of inertial sensors while maintaining accurate and drift-free lower-body joint angle estimates.  

Full-body inertial motion capture typically involves a dense array of sensors distributed across 

various body segments (Roetenberg et al., 2009) to capture detailed joint angles reliably. One 

remaining problem is the sensor-to-segment calibration, which typically requires an exact pose or 

motion to be performed (Di Raimondo et al., 2022; Ekdahl et al., 2023). Usually, between 11 to 18 

sensors must be mounted on the body for full-body tracking, which renders the setup cumbersome 

and intrusive, limiting practical applications and user comfort.  

The issue of calibrating inertial sensors to body segments is a critical factor in ensuring accurate 

tracking. Self-calibration techniques or calibration-free approaches have gained prominence in 

recent research (Laidig et al., 2022; McGrath & Stirling, 2020, 2022; Taetz et al., 2016; Zimmermann 

et al., 2018), aiming to automate the alignment process, thereby reducing the dependency on 

manual calibration procedures which are prone to human error.  

Another direction is concerned with inertial full-body tracking from a reduced amount of inertial 

sensors (Huang et al., 2018; Yi et al., n.d., 2022). These approaches try to estimate the full-body pose 

from 5 or 6 sensors mounted at the extremities and close to the body center. The main challenge in 

these approaches are the increased ambiguity of the measurements. This is typically addressed via a 

recurrent neural network approach, sophisticated body model and physically relevant detections and 

modeling. However, increased drift or failure to capture subtle movements renders these 

approaches often unreliable for long-term pure inertial tracking. 
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There are some recent approaches to combine a sparse amount of inertial sensors in the above 

mentioned setting, i.e. that are sparsely distributed over the body segments, and combined with an 

external camera (Pan et al., 2023) of an HMD (Kim & Lee, 2022). 

In contrast, our approach reduces the number of required sensors while maintaining accuracy, with 

reduced drift, due to a dense sensor network mounting on the lower-body segments, making the 

system mobile, practical and reliable for everyday usage. 

Therefore, our proposed system aims to balance the requirements of high joint angle and positional 

tracking accuracy and unobtrusive setup, by utilizing a synergistic approach combining ego-centric 

visual upper-body tracking from a HMD with inertial sensor-based lower-body tracking with self-

calibrating joint position estimation to obtain anatomically correct kinematic estimates of the full 

human body. The approach utilizes advanced calibration and drift mitigation techniques to ensure 

that the system can be deployed easily and comfortably, targeting seamless interaction within virtual 

or augmented environments. 

3 APPROACH  

Fused visual-inertial tracking 
 
The proposed approach consists of a head-mounted display (Meta Quest Pro1) and seven inertial 

sensors (Xsens AWINDA2) that stream data via Wi-Fi to a Desktop PC, as shown in Figure 1 on the left-

hand side. The latter is used to fuse the data into a consistent kinematic skeleton, as shown in Figure 

1 on the right-hand side. 

 

  

Figure 1 - Overview of visual-inertial full-body tracking system 

 

 

 

1 https://www.meta.com/de/quest/quest-pro/ 
2 https://www.movella.com/products/wearables/xsens-mtw-awinda 
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Figure 2: Segments of the upper body (red lines) and root joint (blue dot) in the upper image, segments, and root joint of the 
left and right hand (middle image) 3, and the visualization of both together in our visualizer, lower image. 

 

Figure 2 shows the upper body skeleton. The SDK description describes all joint names4. 

Figure 3 shows the lower body skeleton from the inertial motion tracking. Note, the current 

demonstrator is based on the IMU-based QuatTracker and the three-step calibrationas described in 

 

3 https://developer.oculus.com/documentation/native/android/move-ref-body-joints/ 
4 https://developer.oculus.com/documentation/native/android/move-ref-body-joints/ 
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detail in (Miezal, 2021). However, a novel self-calibrating approach, not yet integrated, is being 

developed, as described below. 

 

Self-calibrating inertial tracking (JointTracker) 

In this section we consider inertial lower body tracking using the lower body configuration illustrated 

in Figure 3, with 7 inertial sensors (𝐼𝑖
𝑁) and six joints (𝐽𝑖,𝑗

𝑁 ). In the figure, the joints are connected via 

blue lines and an IMU-to-Segment calibration is not given. Inertial motion tracking typically exploits a 

fixed biomechanical model with a prior calibration step where the orientation of the inertial sensor is 

estimated with respect to the corresponding segment of the biomechanical model (Ekdahl et al., 

2023). We investigated a calibration-free real-time estimation approach that estimates the IMU pose 

(orientation and position) in a navigation frame and anatomical joint positions adapted (self-

calibrated) to the person wearing the inertial sensor network. This is performed via an online 

recursive estimation of the IMU states and the joint position as further state variables that are 

estimated alongside the states of the IMU pose; the method, including evaluations, is published in 

(Taetz et al., 2024). 

 

Figure 3: Illustration of the kinematic model of the lower body in the navigation frame (N) with segments (blue lines),  joint 
positions (red dots) and inertial sensors (small boxes) with their coordinate systems.  

 

Important features of this approach that support the requirements are: 

The approach: 

- works in real-time and is calibration-free, i.e. works directly online on a data stream of 

inertial data from a body sensor network, without exact placement of the sensors on the 

segment or calibration poses or functional movements being required 

- allows for segment length estimation of all segments with two joints to personalize the 

segment length to a specific person wearing the inertial sensor network. 
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4 RESULTS 

A video of the integrated demonstrator is shown here: 

https://www.youtube.com/watch?v=S9xITW0cD1Y 

 

JointTracker results 

The following plots show the results of estimating segment length based on the above-mentioned 

JoinTracker states. The segment length is computed as the Euclidean distance between the two joints 

flanking each segment (see Figure 3). For further explanations, see (Taetz et al., 2024). 

Segment length estimation based on joint position estimates from forward walking motion  

(dataset: 6-minute walking test5). The segment length converges after about 3-4 seconds except on 

the pelvis segment, which has less motion, and the convergence takes about twice as long as can be 

observed in the plots shown in Figure 4. 

 

5 https://zenodo.org/records/10253111 

https://www.youtube.com/watch?v=S9xITW0cD1Y
https://zenodo.org/records/10253111
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Figure 4: The plot shows the online segment length estimation and the timeline of the different lower body segments. The 
green area displays an uncertainty measure from the Bayesian recursive estimator, revealing the uncertainty of the joint 
position estimate. 
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5 LIMITATIONS AND NEXT STEPS 

Intensive user testing for robustness, validity and usability needs to be conducted. 

Furthermore, the synchronization and registration of one or multiple external camera(s) with the 

ego-centric visual inertial setup could allow to further reduce the number of required inertial sensors 

(Pan et al., 2023).  

The JointTracker requires a minimum amount of motion in all degrees of freedom to estimate the 

joint positions accurately. Its applicability within the application scenarios needs to be further 

investigated. 
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