

This project has received funding from the European Union’s Horizon Europe research and innovation

programme under Grant Agreement No 101092889, Topic HORIZON-CL4-2022-HUMAN-01-14

SHARESPACE

Embodied Social Experiences in Hybrid Shared Spaces

Project Reference No 101092889

Deliverable D4.3. Data-Driven Animation of SHARESPACE Avatars

Workpackage WP4: Interaction-Aware Avatar Animation and Rendering

Nature DEM (Demonstrator)

Dissemination Level PU - Public

Date 5 June 2024

Status V1.0

Editor(s) Stéphane Donikian, Yann Pinczon du Sel, Sébastien Maraux,
Bastien Arcelin (Golaem)

Involved Institutions Golaem, UM, CYENS, INRIA

Document Description This document illustrates the workflow developed to animate
avatars from the different streamed data.

 Public 05.06.2024 D4.3

Page 2 of 42

CONTENTS

List of Tables ...4

1 Introduction..5

1.1 Purpose of the document ... 5

1.2 Structure of the document ... 5

2 Overview of the approach ..6

3 Preparation of the scene in Maya ..8

3.1 Introduction .. 8

3.2 MotionStreaming Behavior... 8

3.3 Simulation Export ... 10

4 Unreal Project...12

4.1 Introduction .. 12

4.2 Golaem Simulation ... 12

4.3 Pixel Streaming BVH ... 13

4.4 BVH to Golaem Simulation ... 16

4.4.1 Introduction .. 16

4.4.2 Configuration .. 17

4.5 Audio to Golaem Simulation ... 20

4.5.1 Introduction .. 20

4.5.2 Audio2Rig Blueprint parameters (standard configuration) ... 21

4.5.3 Audio2Rig blueprint Init detail .. 21

4.5.4 Audio2Rig blueprint inference detail .. 22

4.5.5 Audio2Rig blueprint debug detail ... 22

4.5.6 Audio2Rig blueprint Find Skeletal Mesh detail ... 23

4.5.7 Audio2Rig blueprint Set Morph Target detail ... 23

5 Testing the application ...24

6 Modifying the project ...25

6.1 Creating a new character .. 25

 Public 05.06.2024 D4.3

Page 3 of 42

6.2 Adding a character in a project ... 29

6.3 Modifying the streamed BVH data before animation ... 30

7 Retargeting animations for the Sport Scenario ..33

7.1 Preparing a character file for animation conversion .. 33

7.1.1 Initial setup ... 33

7.1.2 New morphology on the same skeleton ... 34

7.2 Converting the animation ... 35

7.3 Preparing a character file for replay ... 36

7.4 Replaying the animation on another character .. 38

7.5 Export the retargeted animation .. 39

8 Conclusions ..41

Appendix 1: Unreal tips and tricks ..42

 Public 05.06.2024 D4.3

Page 4 of 42

LIST OF TABLES

Table 1: List of Abbreviations ..4

Table 1: List of Abbreviations

Term / Abbreviation Definition

Mocap Motion Capture

VR Virtual Reality

XR eXtended Reality

HMD Head Mounted Display

GDA Golaem Digital Asset

GCHA Golaem CHAracter file

GMO Golaem MOtion file

BVH BioVision Hierarchy

 Public 05.06.2024 D4.3

Page 5 of 42

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

This deliverable presents the direct one-to-one animation of the SHARESPACE virtual human, suitable

for the direct animation of L1 avatars. Facial expressions of the avatar are animated using a

combination of lip syncing driven by the participants’ speech and gaze control driven by eye tracking

data when those data will be available. The avatar animation is driven by encoded motion capture data

(WP3). For the peloton scenario, motion capture of the bike should also be provided.

1.2 STRUCTURE OF THE DOCUMENT

This document is structured as follows:

• Section 2 of this document provides an overview of the different steps needed to animate an

avatar in an Unreal application.

• Section 3 is dedicated to the preparation of the scene in Maya.

• Section 4 is devoted to presenting the creation and configuration of the scene, in Unreal.

• Section 5 explains how to test the application with live or emulated streams.

• Section 6 illustrates how to create and add a new character in the project and also how to modify

the streamed mocap data before the animation to integrate for example the result of the

Cognitive Architecture (WP5).

• Section 7 explains how to retarget animations for the Sport Scenario.

• Section 8 concludes this document.

 Public 05.06.2024 D4.3

Page 6 of 42

2 OVERVIEW OF THE APPROACH

To illustrate the creation and animation pipeline, we have developed a SHARESPACE sample project

available for all SHARESPACE partners that may need it. The purpose of this documentation is to cover

only the parts that are specific to the SHARESPACE project, as this is based on the use of Golaem

existing commercial products.

• The usage of Golaem for Maya to prepare and export a GDA file are documented here:

https://golaem.com/content/doc/golaem-crowd-documentation/golaem-crowd

• The usage of Golaem For Unreal to replay the simulation in Unreal is documented here:

https://golaem.com/content/doc/golaem-crowd-documentation/golaem-unreal

Note that the Sharespace sample project replays a simulation in Unreal (not a cache):

https://golaem.com/content/doc/golaem-crowd-documentation/overview-7, which works

through the export of a GDA file (https://golaem.com/content/doc/golaem-crowd-

documentation/golaem-engine-exporter)

The SHARESPACE sample project comes with:

• The GolaemCrowd maya plugin that is specific to SHARESPACE (includes the

bvhStreamingBehavior that is not publicly available) – This is useful only for SHARESPACE

partners that need to edit the simulation;

• The corresponding GolaemForUnreal plugin - This is useful only for SHARESPACE partners that

need to create new simulations;

• The maya scene that is used to create the simulation – It contains the simulation, and it is

useful for all SHARESPACE partners;

• The unreal project that is ready to use and customize – It contains the unreal project that

replays the simulation, and it is useful for all SHARESPACE partners.

To launch the simulation:

• Extract the GolaemForSharespace_V5 unreal project and the GolaemMayaScene somewhere

on one disk of your computer;

• Add the GLMCROWD_UNIT=1 environment variable in your system -

https://golaem.com/content/doc/golaem-crowd-documentation/through-operating-system;

• Launch the GolaemForSharespace_V5/SHSParticipant unreal project;

• In Unreal, in the GolaemSimulation node, edit the GDAFile attribute to point to the local

location on one disk of your computer of the

GolaemMayaScene\GDA\GDASceneWith5Actors\GDASceneWith5Actors.gda file, as seen in

the following screenshot:

https://golaem.com/content/doc/golaem-crowd-documentation/golaem-crowd
https://golaem.com/content/doc/golaem-crowd-documentation/golaem-unreal
https://golaem.com/content/doc/golaem-crowd-documentation/golaem-unreal
https://golaem.com/content/doc/golaem-crowd-documentation/overview-7
https://golaem.com/content/doc/golaem-crowd-documentation/golaem-engine-exporter
https://golaem.com/content/doc/golaem-crowd-documentation/golaem-engine-exporter
https://golaem.com/content/doc/golaem-crowd-documentation/through-operating-system

 Public 05.06.2024 D4.3

Page 7 of 42

• Hit the play button, and start streaming.

 Public 05.06.2024 D4.3

Page 8 of 42

3 PREPARATION OF THE SCENE IN MAYA

3.1 INTRODUCTION

It is necessary to use Golaem for Maya to build the simulation within Maya:

https://golaem.com/content/doc/golaem-crowd-documentation/golaem-crowd

The behavior graph for each streamer might look like that:

With:

● A default animation that is played when no streaming is connected;

● A BVH streaming behavior that plays the streaming animation with a higher priority than the

default behavior, and with start and stop triggers that are set whenever a streamer is

connected/disconnected.

3.2 MOTIONSTREAMING BEHAVIOR

When an entity needs to use the streaming capability, use the hidden MotionStreaming behavior by

typing the following commands in the Script Editor:

createNode CrowdBeMotionStream;

https://golaem.com/content/doc/golaem-crowd-documentation/golaem-crowd

 Public 05.06.2024 D4.3

Page 9 of 42

The motion will be created and available in the Behavior Nodes panel of the Golaem behavior editor.

It can now be dragged and dropped in the behavior of your choice.

The stream behavior is configured like a motion behavior, except for the motion file part, which will

come from the streaming instead. The streaming part cannot be tested directly within Maya, but a

debug BVH file can be played to check that it is configured correctly:

When replaying a BVH, it is important to configure the Motion SkeletonMapping to configure how the

motion’s skeleton will be interpreted by Golaem.

 Public 05.06.2024 D4.3

Page 10 of 42

For a better understanding of this part, the documentation of the Motion Skeleton Mapping can be

checked here:

https://mayacrowd.com/content/doc/golaem-crowd-documentation/motion-skeleton-mapping

3.3 SIMULATION EXPORT

The simulation should then be exported using the GDA exporter:

https://mayacrowd.com/content/doc/golaem-crowd-documentation/golaem-engine-exporter

Make sure to set some attributes as public to be able to set them in the Unreal project

(https://golaem.com/content/doc/golaem-crowd-documentation/gda-attributes-window):

● Export the BVH streamHeader and streamFrame attributes (for each streamer)

https://mayacrowd.com/content/doc/golaem-crowd-documentation/motion-skeleton-mapping
https://mayacrowd.com/content/doc/golaem-crowd-documentation/golaem-engine-exporter
https://golaem.com/content/doc/golaem-crowd-documentation/gda-attributes-window

 Public 05.06.2024 D4.3

Page 11 of 42

● Export the triggers driven attributes (both start and stop for each streamer):

Important notice:

In the case of the multistreamer sample, it is important to name exported behaviors and triggers in a

similar way for each streamer to allow duplicating and configuring the blueprint scripts once in unreal.

For instance, here the behaviors and triggers are named:

● streamerXbvhBeh

● streamerXStartTrigger

● stramerXStopTrigger

Which will export the GDA attributes in:

● streamerXbvhBeh.streamHeader

● streamerXbvhBeh.streamFrame

● streamerXStartTrigger.drivenAttribute

● stramerXStopTrigger.drivenAttribute

Once in Unreal, it is easy to separate each streamer by simply concatenating the streamer name with

each attribute.

 Public 05.06.2024 D4.3

Page 12 of 42

4 UNREAL PROJECT

4.1 INTRODUCTION

The Unreal scene is made of three main parts:

● The GolaemSimulation node, that replays the GDA file prepared in the previous step;

● The pixel streaming blueprint, that connects to the streamed animation;

● The Golaem blueprint that connects the Golaem simulation with the streaming.

4.2 GOLAEM SIMULATION

The following tutorial explains how to configure a Golaem Simulation replaying the GDA file into

Unreal: https://golaem.com/content/doc/golaem-crowd-documentation/overview-7

Once correctly loaded, the Golaem simulation node should show the public GDA properties that can

be overridden:

https://golaem.com/content/doc/golaem-crowd-documentation/overview-7

 Public 05.06.2024 D4.3

Page 13 of 42

4.3 PIXEL STREAMING BVH

Each streamer is a different instance of the same Pixel Streaming blueprint, configured to connect with

a configured streamer name (streamer1, streamer2, streamer3, streamer4):

 Public 05.06.2024 D4.3

Page 14 of 42

The Pixel Streaming blueprint looks like this:

More in details, it is mainly the stream receiver that check the BVH message type and switch depending

on it:

 Public 05.06.2024 D4.3

Page 15 of 42

And depending on the received type, it simply fills different variables:

● BVHMotionStarted will be set to true when a BVHStartMotion message is received, and back

to false when a BVHStopMotion message is received;

● BVHHierarchy will hold the content of the last BVHHierarchy message that was received;

● BVHMotionFrame will hold the content of the last BVHMotionFrame message that was

received.

 Public 05.06.2024 D4.3

Page 16 of 42

4.4 BVH TO GOLAEM SIMULATION

4.4.1 Introduction

The link between the Pixel Streaming BVH and the Golaem Simulation is done in the Golaem blueprint.

Its purpose is to bring the variables that were stored in each blueprint in the Golaem GDA properties

that were prepared for this purpose during the preparation of the scene in Maya.

This is the part that links the BVHMotionStarted variable to the start and stop triggers that were

defined in the Maya scene, and exported in the GDA:

This is the part that links the BVHHierarchy and BVHMotionFrame variables to the streaming behavior

that was defined in the Maya scene and exported in the GDA:

For each part, the variables are used through a reference to the pixel streaming blueprint instance of

the entity that is configured. Each entity in the scenario needs to see its streaming blueprint linked to

the Golaem simulation with the correct GDA attribute name.

As each GDA attribute name was prefixed with the streamer name in the Maya scene, it is now easy to

concatenate a public blueprint variable (to configure with the steamer name) with the end of the GDA

attribute:

 Public 05.06.2024 D4.3

Page 17 of 42

This is used everywhere a GDA attribute has to be found, which allows each instance of the blueprint

to be correctly configured with:

● The Golaem simulation;

● The pixel streaming blueprint instance;

● The streamer name.

Note that each GDA attribute that is configured needs to be configured with the override value to true

first.

4.4.2 Configuration

The GolaemSimulation node has to be configured with the correct GDA file:

 Public 05.06.2024 D4.3

Page 18 of 42

Each instance of the pixel streaming (one per replay actor) needs to be configured with the correct

Server URL and Streamer name:

Configuration of the pixel streaming blueprint instance

 Public 05.06.2024 D4.3

Page 19 of 42

Each instance of the Golaem blueprint has to be configured with the correct:

● Golaem Simulation;

● Pixel Streaming Blueprint instance;

● Streamer name.

Configuration of the Golaem blueprint instance

 Public 05.06.2024 D4.3

Page 20 of 42

4.5 AUDIO TO GOLAEM SIMULATION

4.5.1 Introduction

Audio lipsync is achieved via a deep learning model and Pytorch standard (beta) integration in Unreal.

It is adapted for a real-time application from the work that will be presented at SIGGRAPH this year1.

It takes audio as input and outputs rig parameters to animate the avatar. The audio is transformed into

a MelSpectrogram before being fed to the neural network. Two networks are used for inference. A

Convolutional neural network (CNN) is used to encode audio information into a latent space, and the

decoder of a trained Variational Auto-Encoder (VAE) is used to predict rig controllers values. The VAE

is trained as a first step, to learn a compressed (or latent) representation of the rig controller's values

parameter space.

LipSync deep learning model training architecture. First, the VAE is trained to encode and reproduce
rig controller values. Then, the VAE decoder is used in another network to predict the rig controller
values from a latent space, z. This latent space is inferred from the MelSpectrogram by the CNN.

To train the CNN, we generated animation on rig controllers using Polywink and audio recordings of

different exercises of the Health Scenario in Spanish Language. The network is then trained to generate

facial rig animation predicting a latent representation fed to the trained VAE decoder. Hence, Polywink

rig controllers are directly inferred from the audio. We extracted the audio processing as well as the

trained neural networks to perform live inference.

The CNN needs a 200 ms audio window to predict the current rig controllers values. This window starts

100 ms before “present” and goes 100 ms in the future. Therefore a delay parameter has been added

to the sharespace audio component to match the 100 ms of data required “in the future”.

1 Bastien Arcelin and Nicolas Chaverou. 2024. Audio2Rig: Artist-oriented deep learning tool for facial animation.
SIGGRAPH ’24 Talks: ACM SIGGRAPH 2024.

 Public 05.06.2024 D4.3

Page 21 of 42

The SharespaceParticipant plugin has been augmented by Golaem to output the received audio data.

It adds to the USharespaceAudioComponent some features to output the stream PCM data as Unreal

data (buffer, rate and channels). It also handles a live audio delay which will be explained below. The

PixelStreaming Blueprint has not been modified as the data is stored in the component and requested

in the Audio2RIG blueprint.

The Unreal Project uses the Unreal 5.3 “Unreal python editor script” plugin, and the “Python

Foundation Packages” which includes Pytorch, required for the inference.

4.5.2 Audio2Rig Blueprint parameters (standard configuration)

The configuration of the Audio2Rig blueprint is straightforward, and needs a link to the Golaem

Simulation and a link to the pixel streaming blueprint of the character to be lipsync animated.

4.5.3 Audio2Rig blueprint Init detail

The Audio2Rig init consists in a single call to the init method on the component, called on Event Begin

Play Unreal event. It will take care of initializing the PyTorch model.

 Public 05.06.2024 D4.3

Page 22 of 42

4.5.4 Audio2Rig blueprint inference detail

The inference part is called by the “Event Tick”. It will call the SharespaceAudioComponent to get PCM

data and then call the Audio2Rig component for inference. A test has been added to only call inference

if sufficient data has been received.

4.5.5 Audio2Rig blueprint debug detail

The blueprint also have a debug print part to display the received phonems activation array (a list of

14 floats) which will help debug.

 Public 05.06.2024 D4.3

Page 23 of 42

4.5.6 Audio2Rig blueprint Find Skeletal Mesh detail

In this blueprint part, the blueprint loop on all Golaem Simulation attached actors to find the Actor

with a Skeletal Mesh configured with the specified name (Therapist_002 in this case)

4.5.7 Audio2Rig blueprint Set Morph Target detail

Finally, the inferred phonem weights are applied to the found skeletal mesh component, on the Morph

Targets (also called blendshapes).

 Public 05.06.2024 D4.3

Page 24 of 42

5 TESTING THE APPLICATION

It is possible either to use live mocap and audio streams or to emulate them thanks to tools provided

by ALE partner.

The streams need to have the same streamer name between the streamer source and the one

configured in the Unreal project. In the sample application streamer names are: streamer1, streamer2,

streamer 3 and streamer4.

For BVH and audio streaming emulation, for each stream, you need to open a console command and

type such type of command:

• Docking system:

docker run -it sharespacestreamer:latest -x 443 -w wss://dev-
pixelstreaming.openrainbow.io -p streamer1 -S -b
./assets/physiotherapist_22Feb2024_ex6_3d.bvh -a
./assets/exercise6.wav

• Standalone streaming tool:

.\shs-streamer.bat -x 443 -w wss://dev-
pixelstreaming.openrainbow.io -p streamer1 -S --bvhFile
.\assets\physiotherapist_22Feb2024_ex6_3d.bvh

In this second case, the audio stream comes from the standard audio input of the used

computer.

 Public 05.06.2024 D4.3

Page 25 of 42

6 MODIFYING THE PROJECT

6.1 CREATING A NEW CHARACTER

Start by importing the FBX representation file of the character into Maya, and remove any namespace

that may exists:

Open the Golaem CharacterMaker and open any existing GCHA from the project (with the

same bone hierarchy)

 Public 05.06.2024 D4.3

Page 26 of 42

Set the detection mode to current values , select the root node in

Maya, and click . When asked, choose to remap the skeleton by bone ID

If remapping by bone id is not available, it means that the skeleton is different from the one used for

the GCHA. Either make sure to get the same skeleton (try another GCHA, or make sure to use the same

options while creating the character), or try to remap by name, but with the risk of obtaining a

malfunctioning GCHA at the end.

Now switch to the geometry tab.

Make sure to extend all nodes in the view, and delete everything except the container nodes (the ones

with this icon:). Now select all the geometry in the Maya Outliner:

 Public 05.06.2024 D4.3

Page 27 of 42

Then select the correct container node in the character maker:

And click the import geometry button:

 Public 05.06.2024 D4.3

Page 28 of 42

It should populate the character with its meshes and materials names:

 Public 05.06.2024 D4.3

Page 29 of 42

Save the modified character as a GCHA file ()

Select the character node:

And relocate the geometry file to the fbx that was used to create this character:

Save the file again, it’s now ready to be used.

6.2 ADDING A CHARACTER IN A PROJECT

Adding a character needs to be addressed both in Maya (adding the entities in the scene) and in Unreal

(importing the geometry and setting up the blueprints that will allow streaming some bvh).

To add an entity in the Maya scene, follow the golaem Quickstart tutorial here:

https://golaem.com/content/doc/golaem-crowd-documentation/golaem-overview. The GDA file

needs to be re-exported for the simulation to take the new characters into account.

To make sure that an entity added in a GDA file can be correctly replayed in Unreal, it needs to be

correctly imported in the Unreal project, making sure that the Unreal Skeletal Mesh node is named as

the golaem GCHA file.

To make sure that the bvh streaming will work on the entity, new instances of the

PixelStreamingBlueprint and the GolaemBluePrint needs to be created and configured in the Unreal

scene.

https://golaem.com/content/doc/golaem-crowd-documentation/golaem-overview

 Public 05.06.2024 D4.3

Page 30 of 42

6.3 MODIFYING THE STREAMED BVH DATA BEFORE ANIMATION

Golaem replays streamed animation data provided by the PixelStreaming plugin. However, it is

possible to intercept the streaming data from the PixelStreaming plugin to make some modification

before injecting them into the Golaem replay system.

The pixel streaming stream is coming from the Pixel Streaming Input block and the following switch:

And it is sent to Golaem by setting the corresponding variables:

● BVHHierarchy

● BVHMotionFrame

● BVHMotionStarted

 Public 05.06.2024 D4.3

Page 31 of 42

So as long as the string format is kept, it is perfectly possible to modify the BVH motion frame between

the pixel streaming stream and the golaem motion replay.

 Public 05.06.2024 D4.3

Page 32 of 42

For instance, here is a sample that will get a given channel in the BVH, and add -90 before injecting it

back to Golaem:

Parse the BVH
motion frame to
obtain an array of
string (each being
a channel in the
BVH)

Save the
array

Get the
channel
value at a
given
index

Convert to float and modify the
value

Re-inject the
modified value in
the array

Convert the array back to a
BVH frame, save for Golaem

This approach can be easily used to integrate the Cognitive Architecture developed in WP5.

 Public 05.06.2024 D4.3

Page 33 of 42

7 RETARGETING ANIMATIONS FOR THE SPORT SCENARIO

7.1 PREPARING A CHARACTER FILE FOR ANIMATION CONVERSION

Golaem retargeting process works by mapping the skeleton of an animation onto the skeleton of

another character on which playing the animation.

The first step for retargeting is therefore to prepare a Golaem skeleton for the process.

7.1.1 Initial setup

● Load the animation’s skeleton in T-pose into Maya

● Open the Golaem character maker , select the root hierarchy for the skeleton and

load the skeleton into the character maker

Note that the skeleton TPose should have the exact same bone dimensions as in the animation. It’s

not the case for the ‘Reference’ bone in the given motion capture, so the ‘Hips’ bone should be

loaded into the character maker rather than the reference bone.

● Use the Golaem Character Maker to map the legs and arms of the skeleton:

https://golaem.com/content/doc/golaem-crowd-documentation/character-maker-overview

https://golaem.com/content/doc/golaem-crowd-documentation/character-maker-overview

 Public 05.06.2024 D4.3

Page 34 of 42

Here is an example of a correctly mapped skeleton:

● Save this golaem skeleton mapping as a new GCHA file.

Once done, this file can be re-used for any animation that shares the exact same skeleton (same

hierarchy, same dimensions).

7.1.2 New morphology on the same skeleton

If the morphology of an animation’s skeleton changes, but everything else stay the same (same

hierarchy, same bone names, …), then it is possible to use a previously done Golaem skeleton mapping

as a base for the new morphology.

● Load the animation’s skeleton in T-pose into Maya

● Open the Golaem character maker, select the root hierarchy for the skeleton and load the

skeleton into the character maker

● A dialog box should ask if remapping the skeleton mapping, or create a new one: choose to

remap (by bone ID or by name should produce the same results if the skeletons really have

the same names and hierarchy of bones):

If the ‘Remap by bone id’ option is grayed out, it means than the number of bones in the new

skeleton is different than the number of bones in the previous skeleton mapping

● Save this golaem skeleton mapping as a new GCHA file.

 Public 05.06.2024 D4.3

Page 35 of 42

7.2 CONVERTING THE ANIMATION

With the Golaem skeleton mapping for the animation loaded into the Golaem Character Maker, switch

into Motion mode , and once again, select and load the same skeleton

joint :

Conversion quality and potential warning messages should be checked at this step:

And the animation file can then be saved as a GMO file.

 Public 05.06.2024 D4.3

Page 36 of 42

7.3 PREPARING A CHARACTER FILE FOR REPLAY

The replay skeleton should also be converted into a Golaem character file in order to replay the

animation.

Load the replay character in T-pose into Maya:

Open the Golaem character maker , select the root hierarchy for the skeleton and load the

skeleton into the character maker

Use the Golaem Character Maker to map the legs and arms of the skeleton:

https://golaem.com/content/doc/golaem-crowd-documentation/character-maker-overview

https://golaem.com/content/doc/golaem-crowd-documentation/character-maker-overview

 Public 05.06.2024 D4.3

Page 37 of 42

Here is an example of a correctly mapped skeleton:

Note that the retargeting process can only works for bones with orientation DOFs, not for joints with

translation DOFs (except on the root bone). At the current state, only animations with the cyclist

(without the bicycle) were available, so it’s recommended to map only the cyclist on this side as well.

As this is the replay character, it’s also important to configure its mesh. Follow the Golaem

documentation to import the geometry and shader in the geometry part of the character maker.

 Public 05.06.2024 D4.3

Page 38 of 42

Once done, save this golaem character as a new GCHA file.

7.4 REPLAYING THE ANIMATION ON ANOTHER CHARACTER

Replaying the animation is just a matter of configuring the replay character file (.gcha) on a new golaem

entity type, and replay the converted animation (.gmo) onto it.

The Golaem QuickStart should is a good base to configure such a scene:

https://golaem.com/content/doc/golaem-crowd-documentation/quick-start

Here is the final scene with the retargeted animation (orange character) and the original animation

(cyan skeleton):

https://golaem.com/content/doc/golaem-crowd-documentation/quick-start

 Public 05.06.2024 D4.3

Page 39 of 42

7.5 EXPORT THE RETARGETED ANIMATION

Once an animation is played in simulation, it can be exported as a Golaem cache thanks to the

Simulation Exporter:

(https://golaem.com/content/doc/golaem-crowd-documentation/simulation-export):

https://golaem.com/content/doc/golaem-crowd-documentation/simulation-export

 Public 05.06.2024 D4.3

Page 40 of 42

The cache can then be baked into either an FBX / Alembic or USD file using the simulation baker tab

on the same tool:

 Public 05.06.2024 D4.3

Page 41 of 42

8 CONCLUSIONS

This deliverable has presented the solution developed to animate L1 avatars by using streamed data

both for body and face. We also introduced a solution to integrate the Cognitive Architecture to allow

the management of L2 and L3 characters, as well as specific needs concerning the Sport Scenario.

A video2 is accompanying this deliverable to illustrate body animation from BVH streams on avatars

with different morphologies, and facial animation driven by the audio stream. Note that gaze tracking

is not yet available, so the eyes of the avatar are currently static.

2 https://www.youtube.com/watch?v=46LtEDNo6xA&t=7s

https://www.youtube.com/watch?v=46LtEDNo6xA&t=7s

 Public 05.06.2024 D4.3

Page 42 of 42

APPENDIX 1: UNREAL TIPS AND TRICKS

Getting the bone transforms of an actor:

You can get a bone transform from a Skeletal Mesh Actor.

Total path of this script is:

- GetAttachedActors, which takes GolaemSimulation as input;

- For each Actor / index : Cast to Golaem Character (or any Actor having a

SkeletalMeshComponent);

- If cast is successful, get the skeletal mesh from the GolaemCharacter

- Call GetBoneTransform on the skeletalMeshComponent.

